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1. Introduction.

Widely used nonparametric measures of association such as Kendall's <
and Spearman's o lead to natural metrics on the set Sn of permutations

of n letters. Let 7 and o be elements of Sn' Four metrics which

we consider are

n
(1-1) D(r,0) = £ |n(i)-o(1)l
i=1
n
(1-2) S(r,0) = Z (x(1)=0(1))?
i=1
(1-3) T(n,0) = the minimum number of transpositions required

to bring (7(1),...,7(n)) into the order (c(1),...,0(n).

(1-4) I(n,0) = the minimum number of pairwise adjacent transpositions
required to bring (n-l(l),...,ﬂ'l(n)) into the order

(c'l(l),...,a'l(n)). Here 71 and o1 are the permutations
inverse to n and o.

In section 2 we derive the mean, variance and limiting normality of
D(n,0) when n and o are chosen independently and uniformly from Sn'
Sqimilar, known, results for S, Tand I are summarized in Table 1. In
section 3 we prove that I+T < D < 2I. The proof and subsequent discussion
of boundary cases depends on combinatorial arguments of independent interest.

In section 4 we discuss the statistical implications of section 2 and 3 along

with some open problems.




2. Properties of the 4 Metrics.

If p denotes one of the functions D, S, T or I, then it is easy

to verify that o 1is a metric on Sn; that is:
p(m,g) >0 and p(n,0) =0 if and only if n =0 ,
p(n,0) = p(o,n) and p(m,o) < o, n) + pln,n) .

Further, all four metrics are right invariant in the sense that
p(n,0) = p(m,om) for 1 ¢ S,- In particular p(l,n) = p(l,ﬂ-l),
where we write 1 for the identity permutation in S - We shall usually

abbreviate p(l,7) by op(n). We consider more specific properties below.

Dgnzoz: The sum of the absolute values of the difference in the ranks is
the metric associated with Spearman's footrule. Kendall (1970) discusses
the footrule as a measure of association and dismisses it because of a lack

of available statistical properties, Toward this end we prove

Theorem 1. Let n and o be permutations chosen independently and

uniformly in Sn' Then, as n goes to infinity

2
(2-1) E(D(1,0)) = 3~ + 0(n)
(2-2) Var (D(n,0)} = ,g r +0(n°)
2
(D(“) ) - !
(2-3) ,P{ z > < x} - 0(x)| >0

Jex

2
vhere G(x)=-—-}- Jx e /edx.
/& Jw
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Proof. Using right invariance, the distribution of D(n,0) 1is the same

as the distribution of D(3,n) = D(n). Thus we may restrict our attention
to D{(x).

We first compute

n n
E(D(n)) = = % s |i-3] =“—3-+o(n).

This proves (2-1). The proof of (2-2) is a lengthy computation and we

only sketch the details. Consider

n
(2-4)  var{d(r)} = x varli-n(1)| +2Z cov(li-n(1)],]3-n(3)])

1=1 i<y
n5 2
=55t o(n”) + 2% cov(li-ﬂ(i)l,|j°“(3)|) .
i<

To simplify the evaluation of the covariance sum note that for any bounded

functions f and g,

Ble(x(1))e(n(5)) = rgy ‘5 W)

B E(£(x(1))E(g(x (1)) - 7 E(£(x(1))e(x(1))]

Be((1))Ba(r (1)) = Fo7 cov(£(n(1)),(r(1))) .
In particular,

(-5)  cov(lt=n()],13-x()]) = = 2y cov(lt-n@)],15x @) -




Consider

(2-6) cov([1-n(U),1g=r(W)]) = £ = |1-2] |52

2

}ILMB

- I£§ (1 (1-1)+n(n-1-1)} {3 (3~1)+(n=3) (n-j-1)}
n

= £,(1,3) + £,(1,3)

Summing fl(i,J) in 1< j for fixed j and then in j yields

L

2-7) IR A ¢ 3)=7L+o(n5).

( 1<J v\t 120

Similarly

(2-8) (1 j):-nh'rO(n}).
i<y o\t 8

(2-8) and (2-7) along with (2-6) and (2-5) show that

nj 2
£ eov(li-n(1)],]3n(3)]) = - 555 + O(a) .
3
i<y
Using thie in (2-4) completes the proof of (2-2).
To prove (2-3) we use Hosfflings (1951) combinatorial central limit
theorem. This states that if [o.riljl 1,j=1,...,n 1is a sequence of square

array’'s and if Wn vhere 7 {8 a random permutation in

n
=3 a

121 ix(1)
Sn then, subject to growth conditions on a;‘J ’

"
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W_-E(W_)
1im (P} S2—P < x| -0x)| =0

n>w« | M\ /var W -

Using (2-2) we readily verify the sufficient coniition given in equation

(12) of Hoeffding (1951) for the array

n c ool s
aj; = fi-j| i,3=1,...,n .

This completes the proof of theorem 1. [}

S‘nzcgz The sum of squares of the difference in the ranks is the metriec
associated with Spearman's coefficient of association p. All of the

results listed in table 1 may be found in Kendall (1970).

Tgnlc): This seemingly natural metric has not received much attention in
the statistical literature. Note first that if ¢ and n are in Sn’
we have

T(1,0) = T(vm,pom) = T(L,7 o) = 1(x" o) .

-lU' )

A result due to Caley (1849) states that T(n = n-C(rr'lcr) where

C(n) 1is the number of cycles in 1. This gives an easy way to compute

T(n,0). Feller (1968), pg. 256, gives a representation of the number of
cycles in a random permutation as a sum of independent random variables.
This representation and standard theorems from probability theory easily
imply the limiting normality of T as well as the results listed in

table 1.

I!ﬂ,crg: This metric arises from Kendall's measure of association 1. It

is thorowghly discussed in Kendall (1970). A simple approach to the analysis




of the stochastic properties of this metric is as follows: A permutation

n is said to have an inversion at (k,2) if k<2 and n(k) >n(2).

A standard result (see for example Knuth (1973) Sec. 5.1.1) is that
I(n,o) = I(l,nc-'l) - the number of inversiops in g L. Feller (1968),
pg- 256 gives a representation for the mumber of inversions in a random
permutation as a sum of independent random variables. From this the
limditing normality as well as the results listed in Table 1 follow easily.
The following table summarizes the means and variances of these
metrics. Only the leading term of the mean and variance is indicated,

the notation [x] 1is used for the integral part of x.

Table 1

Max Mean Variance
n2 n2 2.3

D [é_] 3—- E n

s n5 -n n3 n5
3 & 5%

T n=1 n=logn log n
2 2 3

1 n =n n n
- i 3T

3. Some Inequalities Involving D(n,o).

There are important relations between the various metrics which

generally take the form of inequalities which must be satisfied. For

example, Kendall (1970) discusses the Durbin-Stuart inequality, which
6




in our notation is:

5(r,0) 2 % T(n,0)(1 + 2a2ly

We now prove:

Theoren 2.
(3-1) I(n,q) + T(n,0) < D(m,0) < 2I(r,a) .

Proof. Since all the quantities in (3-1) are right invariant it is

sufficient to show that
(3-2, I(n) + T(1) < D(n) < 2I(x) .

We prove the right hand inequality first.

I(n) = I(ﬂ-l) is the smallest number of pairwise adjacent transpositions
required to bring 7 to the identity. Let x,,1<i< I(n), ©bea
sequence of integers which index's a sequence of transpositions which trans-
form 1 +to ] to i, to ... to n. The ith transposition transforms

n, to = ., by interchanging ﬂi(xi) and ni(x1+l). We may assume that
the sequence x, 1is chosen so that ﬂi(xi) < ni(xi+1). Consider the

difference

By = D

i) = D(ny)
= Jag =y (g +1) ]+ #1emy (g )| =l omy (e )] =g #1am, (g +1)]
There are three possibilities

Cage 1. ni(x1+1) < x;. Then ﬂi(xi) <x eand A, =0.

—yp—— - .l B vaaenthiabet
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Case 2. ni(xi) > xi+1. Then Ajy © 0.

Case 3. ﬂi(xiﬂ) > x; 41, ”i(xi) <x;. Then A, ., =2,
I(n)

Thus D(n) = = AV 2I(x) as desired.
i=1

To prove the left hand side of the inequality (3-2) we need some
more notation.

Denote the inversion n(k) > #(2) with k<2 by [k;z]. Let us
call [k;£] a Type I inversion if n(k) >£¢ and a Type II inversion if
n(k) < £. Thus, every inversion of n is either a Type I or Type II
inversion and some inversions may be of both types.

For a fixed k, if [k;y] 1is a Type I inversion then we must have
k< Yy S ﬂ(k) .

Therefore, denoting the number of elements in a finite set A by |a|,

(3-3) | {y: [k;y] 1s a Type I inversion}| < n(k)-k .

Similarly, if (x;2] 1is a Type II inversion then
n(e) < n(x) <2

and so,

(3ek) |(x: [x;8] is a Type II inversion }| < g-n(g) .

Thus, it follows that




D(m)

il

% k-n (k)|
K

(e-r(2))

1
™

(n(k)-k; + =
(k) >k n(e)

A

(3-5)

> # of Type I inversions + # of Type II inversions

v

I(x) .

(3=5) is clearly a step in the right direction toward prcving (3-2).
In order to actually prove (3~2) we have to examine (3-5) more carefully.
In particular we must see how much was given away at each of the two
inequalities in (3-5).

In the first place, suppose for some integer Yy,

(3-6) k<y<nx)<nly).
Such a y is counted by the sum £  (n(k)-k) but is not counted in
n(k) >k

the sum of the numbers of Type I and Type II inversions since ([k;y] 1is
not an inversion.

Similarly, if x satisfies

(3-7) n(x) <m(e) <x<¢2
then x 1is counted by the sum Z (g-n(2)) vut [x;£] 1is not an
n(g)<e

inversion. Thus, for each such x and y we get a contribution of 1
to D(n) = I(x).
The other place in (3-5) where we have a potential gain of D(x)

over I{n) 1is the last inequality. Here, we gain 1 for each inversion

9
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of =™ which is both Type I and Type II, i.e., for each x having
2
(3-8) x < n(x), v (x)<n(x).

Let us split (3<6) and (3-7) into two pieces each:

(3-6") k < n(k) < :rg(k) (with y=r(k))
(3-6") k<y<mn(k)<n(y)

(3-7") ") < n(2) <8 (with x=1(g))
(3-7") n(x) <n{g) <x <L .

Let us now restrict our attention to a cycle C = (C1’°2""’cm>
of 't of length [C| = m. Thus, n(e,) = ¢, for 1<k<m and

n(cm> = ¢ We call an element or pair of elements of C satisfying

X
(3-6'), (3-6"), (3=7'), (3-7") or (3-8) a eritical configuration of C.

We now show that C has at least m~l critical configurations. We
proceed to induction on m. For m=1 there is nothing to prove. For
m=2 it is immediate since in this case (3-8) clearly holds for the smaller
element of C. Assume for some m > 2 that the claim is valid for all
values < m and suppose C 1is an m-cycle which has at most m=2 critical
configurations. There are several cases:
Case 1. Suppose x € C satisfies (3-6'), i.e., x < n(x) < ﬂe(x). Form
the (m-l)-cycle C' by removing x from C. It is not hard to check
that we have reduced the total number of critical configurations by at least
1l s0 that C' has at most m<3 critical configurations, which is a

contradiction to the induction hypothesis.
10
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Case 2. Similarly, if x ¢ C satisfies (3-7') then by deleting it from C,
we form an (m-1)-cycle C' having at most m-) critical configurations,

which is impossible.

Case 5. Suppose there exists x € C satisfying

- =

x < 1 (x) < 1(x) < 7 (x) .
Thus, C has a critical configuration satisfying (3-6") with k=x and
y:ﬂg(x). Form the (m-2j~cycle C' by deleting =n(x) and ﬂg(x) from
C. It is now not difficult to see that the total number of critical
configurations remaining is at most m-4 (note that x also satisfies

(3-8)), which contradic*s the induction hypothesis.
Case 4. A similar argument applies if some y € C 8atisfies
2
y>(y) > nly) > o) .

Therefore, we may assume that cases 1 through 4 do not occur in
C. However, if c¢ denotes the least element of C then this assumption

k+2(c)

k+1, .
forces Kt

always to be strictly between ﬂk(c) and ¢) for
any k > 0. This is clearly impossible (since C is a cycle) and completes
the induction.

Thus, each m-cycle of n contributes at least m-l to the difference
D(n) - I(n). Therefore

D(x) - I(x) > £ (lcj-1) =z [c[-C(x) =n-C(n) .
C=cycle C
of n

This proves Theorem 2. [ ]

1




As a numerical example, ¥able 2 lists the values of the 4 metrics
vhen n=h,

o

R

Table 2.

n cycles T(n) I(n) D(n) S(n)
(1234 ) (1)@)(3) M) ) 0 0 0
(1243) (1)(2)(34%) 1 1 2 2
(1324) (1)(@3) %) 1 1 2 2
(1342) (1)(234) 2 2 n 6
(1423) (1)(243) 2 2 4 6
(1432) (1)(4) () 1 3 4 8
(2134) (12)(3) (%) 1 1 2 2
(2143) (12) (34) 2 2 l 4
(e314) (123) (%) 2 2 4 6
(2341) (1234) 3 3 6 12
(2u13) (1243) 3 3 6 10
(2431) (124)(3) 2 b 6 1k
(3124) (132) (&) 2 2 n 6
(3142) (1342) 3 3 6 10
(3214) (13)(2)(4) 1 3 4 8
(32b41) {(134) (2) 2 L 6 1k
(3412) (13)(24) 2 4 8 16
(3421) (1324) 3 5 8 18
(4123 ) (1432) 3 3 6 12
(4132 (142)(3) 2 Y 6 1k
(k213) (3)(2) 2 4 6 1k
(¥231) (14)(2)(3) 1 5 6 18
(4312) (1423) 3 5 8 18
(4321) (14)(23) 2 6 8 20

12
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Remarks. 1. An immediute deduction from Theorem . is the bound C(7) + I(n) > n.

2.

We can easily characterize the permutations r « sn where D{(® takes on

)
«

its maximum value. Fcr n even, D(7) - 2; with equality if and only if
n(i} > % for i:l,:,...,g. Thus D(r: takes <n its maximum value for
[ o
((%)1)2 choices of :. A similar bound hclds for odd n. This skewness
(= I3

]

partially explains why the mean of D(7, is larger than %r .

It is natural to consider when equality is attained in theorem 2. The
example in table 2 shows equality of the lower bound in 25 cut of 24
cases, For larger n consideration of the mean values shows that
equality can occur for at most o(n!) elements of Sn' We can
characterize the elements rn < Sn for which equality occurs in the
upper bound. Let us say that 7 has a 3-inversion if there exist
1<3<k with n(1) > n(j) > n(k). It can be shown that D(r) = 2I(n)
if and only if = has no 3-inversions. Knuth (1973), Sec. 5.1.4, notes

that the number of permutations in Sn with no “-inversions is exactly

1 2n+l
the well known Catalan number a7 ( n )e
The number of permutations = satisfying I(s) = T(x) 1is easily seen

to be the Fib, i =
onacci number F2n-l defined by FO C, Fl

Fn+2 = Fn+1 + Fn for n > O, This shows that simultaneous equality

=1 and

of both bounds in Theorem 2 holds exponentially often,

15




2.

L.  Interpretation of Results and Some Open Problems.

Statisticians most often normalize metrics so that they have the proper=-
ties of a correlation coefficient. The translation is straightforward, if
p 1is a metric on Sn and its maximum value is m, define a measure of
association by: R(n,g) =1 - ’gg%,_c_).. We note in this connection the

confusion on pgs. 32-3 in Kendall (1970) concerning Spearman's fgotrule.
. n
It is clear that the proper choice of m for the footrule is [5-]. Knuth

(1973) works with I and T directly as measures of disarray.

An example from Kendall (1970), will help clarify a discussion of
invariance. Consider a class of 10 students ranked in mathematics and

in music.

Pupil a b ¢ 4 e f g h i
Mathematics (x) 7 & 3 10 6 2 9 8 1 5

Music (o) 5 7 3 10 1 9 6 2 8 4

A typical use of the metrics we suggest would be to compute the distance
between the permutations =7 and o as a measure of association. Right
invariance here refers to invariance under changes in the labels a

through Jj, of the students. Right invariance is compelling in so many
situations that we have forced all of the metrics to be right invariant.
This accounts for the at first unnatural appearance of the definition of
I(x,c). Left invariance corresponds to relabeling the ranks; as an

example, it could be that 10 means the worst ranking and 1 the best,
instead of the opposite relation. Among the metrics we consider, T is

left invariant as well as right invariant.

1k




The results in Table 1 suggest that T is unsuitable ror general use,
having very small variunce about a mean very close to its maximum value.
Of the three remaining metrics S has the largest range with corresponding
greater variability. S has the natural interpretation of the euclidian
distance between the vectors n and o regarded as points on the surface
of a sphere in n dimensional space. I and D seem roughly similar,
D seems somewhat easier to interpret directly while I has the advantage
of having its distribution tabula.ed for small sample sizes (cf. Kendall
(1970] ). The inequalities in Section 3 also suggest that the difference

between I and D 1is not very great.

The quantities I and T arise in the analysis of sorting algorithms.
In particular Knuth (1973, pg. 141) considers the quantity B(n) = the
number of right to left maxima in %, Knuth (1973, pg. 157) shows that,
in our notation 2B(7) < I(n) + T(n) < [23].

Use of theorem 2 actually gives the stronger inequality 2B(x) < D(x).
The quantity D(n) also appears in Problem 5.2.1-7 of Kmuth (1973) in

connection with another sorting algorithm.

We conclude by listing some open problems.
1. Find inequalities relating D(1,n) to ©£{1,7). There is the obvious
bound D(1,n) < S(1,7). Note that even this weak bound holds exponentially
often. Indeed, it is not hard to see that D(n) = S(n) for exactly Fn+l
permutations 1 € § (cf. Remark L),
2. Find reasonable 2-sided invariant metrics.

3. Characterize the permutations in Sn vhere equality of the lower bound

of Theorem 2 holds.

15
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